(21c). A solution of methylcyclooctatetraene ($198 \mathrm{mg}, 1.68 \mathrm{mmol}$) and tetracyanoethylene ($1.28 \mathrm{~g}, 10.0 \mathrm{mmol}$) in 10 ml of ethyl acetate was refluxed for 4.5 hr , cooled and processed in the manner outlined earlier. Chromatography of the crude adduct on Florisil and recrystallization from methylene chloride-ether gave 252 mg
 $3.32\left(\mathrm{~m}, 2 \mathrm{H}\right.$, cyclobutene $\mathrm{sp}^{3} \mathrm{CH}$), $3.80-4.12(\mathrm{~m}, 2 \mathrm{H}$, bridgehead), 5.63 (s, 1 H , cyclobutene), and $6.32-6.54$ ($\mathrm{m}, 2 \mathrm{H}$, olefinic).

Anal. Calcd for $\mathrm{C}_{1}: \mathrm{H}_{10} \mathrm{~N}_{4}: \mathrm{C}, 73.15 ; \mathrm{H}, 4.09$. Found: C 73.01 ; H, 4.12.

The labeled derivative was obtained similarly except for extension of the heating period to 9 hr .
9-Thiabicyclo[4.2.1]nona-2,4,7-triene-1,6- d_{2} 9.9-Dioxide (25). To a stirred solution of 9 -thiabicyclo[4.2.1]nona-2,4,7-triene 9,9-dioxide (3.36 g) in 250 ml of anhydrous tetrahydrofuran at -70° under nitrogen was added 40 ml of n-butyllithium ($2 M$) during 15 \min. The deep purple solution was stirred for an additional 10 min and treated in one portion with 10 ml of acetic acid-O-d $(95 \%$ d_{1}). The tetrahydrofuran was removed by evaporation under reduced pressure and 20 ml of water was added. Extraction with methylene chloride was followed by washing of the combined
organic layers with water and brine. Drying and evaporation of solvent afforded 2.17 g of 25 .

Cyclooctatetraene-1,4-d $\mathbf{2}_{2}$ (26). A solution containing 1.00 g of 25 in 400 ml of acetone-ether ($1: 3$) was irradiated as before for 2 hr. Removal of the solvent left a yellow oil which was purified by vpc chromatography on column C. ${ }^{47}$ There was obtained 250 mg of $26 ; \mathrm{m} / \mathrm{e}$ calcd 106.0752, found 106.0753.

9,9,10,10-Tetracyanotricyclo[4.2.2.0 ${ }^{2.5}$]deca-3,7-diene- d_{2} (27). A solution containing 53 mg of $\mathbf{2 6}$ and 640 mg of tetracyanoethylene in 10 ml of ethyl acetate was refluxed for 8 hr and processed in the usual manner. There was obtained after column chromatography on Florisil 78 mg of $27, \mathrm{mp} 248^{\circ}$ (lit. for unlabeled adduct ${ }^{48} \mathrm{mp}$ 249°).

Acknowledgment. This research was supported in part with funds provided by the National Science Foundation. The authors are also indebted to Dr. Robert E. Wingard, Jr., for his early pioneering thermolysis experiments which gave impetus to this study.
(48) P. Scheiner and W. R. Vaughan, J. Org. Chem., 26, 1923 (1961).

Conformational Analysis. CII. Levopimaric Acid and Related Steroidal Dienes ${ }^{1,2}$

Geoffrey A. Lane and Norman L. Allinger*
Contribution from the Department of Chemistry, University of Georgia, Athens, Georgia 30602. Received December 6, 1973

Abstract

Force field calculations suggest that the conformation of levopimaric acid and configurationally related steroidal dienes such as cholesta-2,4-diene may best be discussed in terms of a conformationally mobile system in which the diene ring can adopt a "levopimaric like" or a "cholesta-2,4-diene like" conformation. The energies of these conformations vary with the number and positioning of substituents, and the resulting equilibria are discussed for a number of model compounds. Previously reported circular dichroism data are discussed in terms of relative populations calculated for these conformers. The effects of substituents appear to be important in determining the amplitudes of the circular dichroism curves.

X-Ray crystallography ${ }^{3}$ has shown that levopimaric acid (1a) exists in a folded conformation in the crystalline state, with the $\mathrm{C} 9-\mathrm{Cl0}$ bond in a quasiaxial orientation with respect to the diene ring. Investigation of the optical rotatory dispersion ${ }^{4}$ of levopimaric acid (1a) and cholesta-2,4-diene (2a) had previously led to the suggestion that levopimaric acid exists in this folded conformation in solution, in contrast to the extended conformation deduced for the configurationally related cholesta-2,4-diene (2a), in which the $\mathrm{C} 10-\mathrm{C} 9$ bond is quasi-equatorial. Supporting evidence for the latter conclusion had been obtained from nmr, ${ }^{4,5}$ surface film, ${ }^{6}$ and photochemical ${ }^{7}$ studies.

[^0]

2a
Burgstahler, et al., ${ }^{8}$ have investigated the effect of substituents on the circular dichroism of the $\pi \rightarrow \pi^{*}$ band at $c a .270 \mathrm{~nm}$ of levopimaric acid and configurationally related steroidal 2,4 -dienes with varying substitution patterns (see Table 1). The sign and magnitude of the Cotton effect showed a marked dependence on the substitution.
The degree to which this dependence reflects conformational changes is not clear a priori, and an independent assessment of the effect of substituents on the
(8) A. W. Burgstahler, J. Gawronski, T. F. Niemann, and B. A. Feinberg, Chem. Commun., 121 (1971).

Table I. CD of Levopimaric Acid and Derivatives and Related Steroid 2,4-Dienes ${ }^{a}$

	 1			 2			
	R_{1}	R					$\begin{gathered} \Delta \epsilon(\mathrm{ca} \\ 270 \mathrm{~nm}) \end{gathered}$
$\begin{array}{r} 1 \mathbf{a} \\ \mathbf{b} \\ \mathbf{c} \end{array}$	$\begin{aligned} & i-\operatorname{Pr} \\ & i-\operatorname{Pr} \\ & \mathrm{H} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{CO}_{2} \mathrm{I} \\ & \mathrm{CO}_{2} \mathrm{I} \\ & \mathrm{CMe} \end{aligned}$					$\begin{aligned} & -12.2 \\ & -11.3 \\ & -10.9 \end{aligned}$
	R_{1}	R_{2}	R_{3}	R_{4}	R_{5}	R_{6}	
$\begin{gathered} 2 \mathrm{a} \\ \mathrm{~b} \\ \mathrm{c} \\ \mathrm{~d} \\ \mathrm{e} \\ \mathrm{f} \\ \mathrm{~g} \\ \mathrm{~h} \\ \mathrm{i} \end{gathered}$	H	Me	H	H	$\mathrm{C}_{8} \mathrm{H}_{17}$	H	+12.4
	Me	Me	H	H	$\mathrm{C}_{8} \mathrm{H}_{17}$	H	+11.1
	H	Me	H	OH			+9.4
	H	Me	H	H	OH	H	+11.7
	H	Me	H	H	OH	Me	+11.2
	H	Me	H	OH	OH	Me	+9.5
	H	Me	$\Delta 9$ (11)-ene		OH	Me	+7.1
	H	Me	Me	OH			+3.9
	H	H	H	H	OH	H	+2.1

${ }^{a}$ Reference 8. ${ }^{b} \mathrm{BMD}=$ bismethylenedioxy derivative of the hydroxycortisone side chain.
conformation of these systems seemed called for. As we are now able to calculate geometries and conformational energies for molecules containing delocalized systems, ${ }^{9}$ we have carried out molecular mechanics calculations on a number of model systems.

Whalley, et al., ${ }^{3}$ discussed the conformation of levoprimaric acid and cholesta-2,4-diene and related compounds in terms of a conformationally homo-

geneous system, taking a small $\Delta \epsilon$ value as evidence for a more planar (less chiral) diene system (see below) intermediate between the two extreme conformations.

The calculations reported here lead us to suggest that a better approximation to the conformational situation in molecules such as these, in solution, is to treat each diene as a pair of interconverting conformers of type E (extended) and type F (folded). ${ }^{4 b, 8}$ The observed Cotton effect is then a function of the relative population of the two conformers, the chirality of the diene system in each of the conformers, and substituent effects on the Cotton effect of the diene system in each conformer.

Calculation of Conformational Energies

The calculation method, which has previously been reported, ${ }^{9}$ uses in an iterative cycle a VESCF sequence to calculate bond orders in the conjugated π system and a molecular mechanics minimization of the strain energy of the molecule as a whole, which makes use of the parameters calculated in the VESCF sequence. The steric energy has been calculated for type E and

[^1] (1973).
type F conformers of a number of model systems, and the results are reported in Table II, together with the calculated conformer populations at $298^{\circ} \mathrm{K}$.

Table II. Calculated Conformational Properties of the Steroidal 2,4-Diene Derivatives

The fact that minimization of the energies of conformations E and F in each case leads to distinct structures serves to indicate that the molecules exist as equilibrium mixtures with a barrier to interconversion between the two conformers and not a single conformation of intermediate structure.

As the C13 $i-\mathrm{Pr}$ group was found not to affect the circular dichroism markedly, ${ }^{8}$ calculations were carried out on a Cl3 H model. The calculations were further simplified by treating the carboxylic acid moiety and the $11 \beta-\mathrm{OH}$ moiety, which the program cannot handle currently, as a methyl group and hydrogen atom, respectively. In the steroid series, the calculations were further simplified by omitting the side-chain structure. These simplifications should not affect the calculated conformer populations or geometries significantly. ${ }^{10}$

Results and Discussion

If we take 4 as a starting point, in this case the extended conformation is the more stable by $1.41 \mathrm{kcal} /$ mol (Table II).

The introduction of a β-methyl group at Cl 0 or a $\alpha-$ methyl group at C9 (steroid numbering) will shift the equilibrium between the folded and extended conformers. Our analysis of the interactions involved is largely straightforward and essentially in agreement with the conclusions of earlier workers. ${ }^{3,8}$

A β methyl at C 10 , as in 3 , leads to the E conformer

[^2]being favored by $2.74 \mathrm{kcal} / \mathrm{mol}$. This destabilization of the F conformer relative to the E , comparing 3 to 4 , can be attributed to the unfavorable interactions between the 10β methyl and the Cl methylene in the F conformation of 3 . This interaction is greatly relieved in the E conformation.

In the F conformers, the Cl hydrogens adopt a staggered relationship with respect to the 10β bond. The interactions between the 10β substituent, whether hydrogen or methyl, and the 1β hydrogen are about the same in both the extended and folded conformers. However, a strong repulsive interaction is introduced between the $1 \alpha-\mathrm{H}$ and the 10β moiety in the F conformers, which is more severe in the 10β-methyl compounds (e.g., 3) than in the $10 \beta-\mathrm{H}$ compounds (e.g., 4). The unfavorable interactions between the $11 \alpha \mathrm{H}$ and $1 \beta \mathrm{H}$ in the E conformer are replaced by an unfavorable interaction of similar magnitude between the 11α H and the $1 \alpha \mathrm{H}$ in the F conformer and do not contribute appreciably to the conformational energy difference.

If both a 10β-methyl group and a 9α-methyl group are present as in 5 , the E conformer is favored by only $0.06 \mathrm{kcal} / \mathrm{mol}$. For the $10 \beta-\mathrm{H}, 9 \alpha$-methyl compound (6), the F conformer is now favored by $1.22 \mathrm{kcal} / \mathrm{mol}$. The substitution of a 9α methyl for a $9 \alpha \mathrm{H}$ destabilizes the E conformer relative to the F by a very similar amount in the presence and absence of a 10β-methyl group. Thus the change in the relative energy of the F and E conformers is $2.68 \mathrm{kcal} / \mathrm{mol}$ between 3 and 5 and $2.63 \mathrm{kcal} / \mathrm{mol}$ between 4 and 6 . In other words, additivity of these methyl group interactions is a good approximation in the steroidal compounds.

The destabilizing effect on the E conformer of the 9α methyl, compared to a $9 \alpha \mathrm{H}$, is due largely to the unfavorable interaction between the $1 \alpha \mathrm{H}$ and the adjacent 9α-methyl proton in the E conformer. This interaction is relieved in the F conformer. However, unfavorable interactions are introduced between C2 and C4 and the adjacent 9α-methyl protons, in contrast to the attractive force at one time postulated to exist between the 9α-methyl and the diene system. ${ }^{4 \mathrm{a}}$

More subtle effects come to light in comparing the steroids with the "resin acid" series. The effect of a 9α-methyl group in destabilizing the E conformer relative to the \mathbf{F} (7 and $\mathbf{8}$) is notably smaller than in the steroid case, and the substitution of a 14α methyl for a $14 \alpha \mathrm{H}$ decreases the effect still further. These changes can be related to buttressing effects.

Comparing the least substituted "resin acid" structure (7) with the simplest steroid structure (4), the D ring in the latter bends the $14 \alpha \mathrm{H}$ back toward the center of the C ring where it interacts unfavorably with the $9 \alpha \mathrm{H}$. This interaction is almost independent of the A ring conformation here, and the E conformer is favored over the F by $1.39 \mathrm{kcal} / \mathrm{mol}$ in 7 and 1.41 $\mathrm{kcal} / \mathrm{mol}$ in 4.

When a 9α methyl is substituted for the 9α hydrogen, as in 8 , the F conformer is preferred by $0.84 \mathrm{kcal} / \mathrm{mol}$, compared to $1.22 \mathrm{kcal} / \mathrm{mol}$ in the steroid 6 . The difference can be related to the greater flexibility of the "resin acid" structures. In the highly substituted steroid 5, in which flexibility would be expected to be very small, the E conformer is greatly destabilized by a $2.63-\mathrm{kcal} / \mathrm{mol}$ repulsion between the 9α methyl and 1 methylene. This repulsion is much less serious in the

E conformer of the "resin acid" structure $8(0.55 \mathrm{kcal} /$ $\mathrm{mol})$. In the steroids, the D ring forces the $14 \alpha \mathrm{H}$ back into the 9α methyl, which is in turn forced hard against the Cl methylene. If the D ring is missing, as in 8 , the 14α hydrogen can lean out away from the C ring and the 9α methyl can lean away from Cl so the repulsion is less serious.
By this line of reasoning, the introduction of a 14α methyl group as in 9 should further destabilize the E conformation. However, calculations show the opposite trend. The F conformer is favored by 0.84 $\mathrm{kcal} / \mathrm{mol}$ in 8 but only $0.52 \mathrm{kcal} / \mathrm{mol}$ in 9 .

The expected increase of the 9α-methyl/ Cl methylene repulsion in the E conformer on substitution of a 14α methyl for a $14 \alpha \mathrm{H}$ is in fact calculated. The repulsion between the nearest hydrogen on the 9α methyl and the 1α hydrogen is $0.47 \mathrm{kcal} / \mathrm{mol}$ in 8 and increases to $0.58 \mathrm{kcal} / \mathrm{mol}$ in 9 . The geminal dimethyl at C 14 does destabilize the conformation in the way supposed, but this is overridden by some other effect.

This overriding effect appears to be the destabilization of the F conformer of 9 by a "reflex effect."" The syn-diaxial methyl interaction tends to spread apart the 9α and 14α methyls in 9 , and the resulting reflex effect forces together the 10β hydrogen and the 8β hydrogen. This might be expected to affect both the E and F conformers. However, investigation of the calculated structures of the F conformers of these compounds reveals a rather subtle feature. The repulsion between the $11 \alpha \mathrm{H}$ and $1 \alpha \mathrm{H}$ (and perhaps also the $10 \beta-\mathrm{R} / \mathrm{Cl}$-methylene interactions) in the F conformers results in opening of the $\mathrm{Cl}-\mathrm{Cl} 0-\mathrm{C} 9$ angle and a rotation of the $10 \beta-\mathrm{R}$ group into the B ring. Hence the reflex effect of the 14α-methyl $/ 9 \alpha$-methyl repulsion in 9 would be expected to have a greater destabilizing effect on the F conformer, in which the $10 \beta-\mathrm{H} / 8 \beta-\mathrm{H}$ interaction is intrinsically more severe (see diagrams). According to the calculations, the $10 \beta-\mathrm{H} / 8 \beta-\mathrm{H}$ interaction is already severe in the F conformer of 8 (0.65 kcal) and is increased to $0.82 \mathrm{kcal} / \mathrm{mol}$ in the F conformer of 9 by the reflex effect of the syn-diaxial methyls.

The reflex relationship also results in more severe interactions on the α face of the molecule in the F conformers. The distance between the 9α-methyl carbon and the 14α hydrogen is $3.00 \AA$ in the E conformer of $\mathbf{8}$ and is reduced to $2.89 \AA$ in the F conformer, despite the fact that the interaction between the 9α methyl and $1 \alpha \mathrm{H}$ in the E conformer is relieved in the F conformer, and the 9α methyl and $14 \alpha \mathrm{H}$ might be expected to splay apart. The effect is greater in the more crowded structure 9. In the extended conformation of 9 , the distance between the syn-diaxial carbons is $3.60 \AA$, while in the folded conformation it is $3.45 \AA$.

These unanticipated reflex effects which become important with the geminal dimethyl substituent outweigh what appeared at first sight to be the dominant effect, and they seem to account for the difference calculated between the equilibria in 8 and in 9.

Conformations and Cotton Effect Data

Accepting that the conformational energies are reasonable in terms of our physical model, the problem

[^3]
rotation of 10β substituent into B ring of F conformers

reflex effect in 9
of reconciling the observed Cotton effects with conformer populations remains. It is calculated that the levopimaric acid model (8) would adopt the F conformation to the extent of 70% at $298^{\circ} \mathrm{K}$ (see Table II). The diene torsional angle calculated is -12.3° which compares with the values of -9.1 and -11.8° reported for the dimeric molecules in the crystalline state. The $[\mathrm{M}]_{315}$ of a solution of levopimaric acid in isooctane was reported ${ }^{4}$ to show a slight decrease between +6 and $+82^{\circ}$. The corresponding calculated conformer populations for the model system are $71.1 \% \mathrm{~F}, 28.9 \% \mathrm{E}$ and $66.9 \% \mathrm{~F}, 33.1 \% \mathrm{E}$. This trend is in the right sense. ${ }^{12}$ Androsta-2,4-diene (3) as a model for cholesta-2,4-diene (2a) is calculated to adopt the extended E conformation deduced from ORD ${ }^{4}$ to the extent of 99% at $298^{\circ} \mathrm{K}$.

The opposing signs of the Cotton effects observed for levopimaric acid (1a) and its derivatives (1b, 1c), on one hand, and cholesta-2,4-diene (2a), on the other, are in accord with the predictions of the diene chirality rule ${ }^{13}$ for the dominant conformer in each model system. The quantitative relationship between the Cotton effect data and the calculated structures and conformer populations is less clear.

Hug and Wagniere ${ }^{14}$ have recently calculated the rotatory strengths of the two long wavelength $\pi \rightarrow$ π^{*} bands of a butadiene system at different dihedral angles, using a CNDO-CI procedure. Their results suggest that the rotatory strength rises approximately linearly with increasing diene dihedral angle, for small angles. Using the data in the paper and the suggested relationships linking rotatory strength and $\Delta \epsilon^{14}$ and assuming a linear relationship with the diene dihedral angle, the values of $\Delta \epsilon$ have been calculated for the equilibrium mixtures (Table III). In each case for which circular dichroism data are available, the sign of the observed Cotton effect is predicted correctly. This is the limit of accuracy usually demanded of theories of the Cotton effect.

However, if the calculated torsional angles and conformer populations are taken to be essentially correct, it may be seen that the observed results cannot be ac-

[^4]Table III. Calculated and Experimental CD of Chiral Dienes

1c

$2 i$

2a

2h

	Con- Compd former	\% popu- lation a	Diene $^{a, b}$ dihedral angle	$\Delta \epsilon$ (calcd)	$\Delta \epsilon$ (exptl)	$\delta \Delta \epsilon^{d}$
$\mathbf{1 c}$	E	30	+7.6	-3.8	-10.9	-7.1
	F	70	-12.3			
$\mathbf{2 a}$	E	99	+11.6	+7.0	+12.4	+5.4
	F	1	-11.2			
$\mathbf{2 i}$	E	92	+7.9	+3.6	+2.1	-1.5
	F	8	-12.8			
$\mathbf{2 h}$	E	52	+11.2	+0.5	+3.9	+3.4
	F	48	-10.5			

${ }^{a}$ Calculated value for model system. ${ }^{b}$ Signed according to the chiral sense. ${ }^{c}$ Calculated assuming a linear $\Delta \epsilon / \omega$ relationship from the results of Hug and Wagniere (ref 14). ${ }^{d}$ Difference between experimental and calculated values. ${ }^{\text {e }}$ See footnote b of Table I.
commodated quantitatively, even by adjusting the magnitude of the linear term. The discrepancies may be due to inaccuracies and approximations in the calculations. Factors other than the nonplanarity of the diene system may also influence the sign and magnitude of the Cotton effect of a diene chromophore. These factors may include twisting of the olefinic bonds, ${ }^{15}$ dynamic effects, ${ }^{15}$ and substituent effects. We will limit our discussion to the last of these.

In view of the predictive success of the diene chirality approach in accounting for the correct sign of the Cotton effects in each case, we will discuss substituent effects in terms of the difference between the observed $\Delta \epsilon$ and that calculated from the diene chirality ${ }^{14}$ ($\delta \Delta \epsilon$, Table III). If this difference is attributed to substituent effects, then in the three cases in which a clear conformational preference is predicted (1c, 2a, 2i) the substituent effect must be strongly positive (2a), weakly negative (2i), and strongly negative (1c).

For the $10 \beta-\mathrm{H}$ compound (2 i) the calculated $\Delta \epsilon$ from the chirality of the diene chromophore agrees well with the observed $\Delta \epsilon$. The substitution of a 10β-methyl group for a $10 \beta \mathrm{H}(\mathbf{2 a}, \mathbf{2 i})$ appears to result in a strong positive substituent effect in the E conformer, over and above the effect of the altered dihedral angle of the diene chromophore. For the levopimaric acid derivative (1c), a strong negative substituent effect is observed for the F conformer. This may be due to the altered angular relationship of the B ring to the diene system or the unusual proximity of the 9α methyl to the diene chromophore.

Questions of the existence and mode of substituent

[^5]Table IV. Axial Allylic Bond Chiralityl ${ }^{16}$

Compd	Conformer	\% population	-Axial allylic		Negative		Net ${ }^{a}$ effect $\delta \Delta \epsilon^{b}$		
1c	E	30	C-C	$\begin{aligned} & \mathrm{C}-\mathrm{H} \\ & 10 \beta \mathrm{H} \\ & 1 \alpha \mathrm{H} \end{aligned}$	C-C	$\begin{aligned} & \mathrm{C}-\mathrm{H} \\ & 6 \beta \mathrm{H} \end{aligned}$	- $\mathrm{C}-\mathrm{H}$	-7.1	
	F	70	$\begin{aligned} & \mathrm{C} 6-\mathrm{C} 7 \\ & 10 \beta \mathrm{Me} \\ & \mathrm{C} 6-\mathrm{C} 7 \end{aligned}$	$1 \alpha \mathrm{H}$	C10-C9	$1 \beta \mathrm{H}$	$+\mathrm{C}-\mathrm{C}$	+5.4	
2a	E	99				$6 \beta \mathrm{H}$			
	F	1			C10-C9	$1 \beta \mathrm{H}$			
2 i	E	92	$\begin{aligned} & 10 \beta \mathrm{H} \\ & 1 \alpha \mathrm{H} \end{aligned}$			$6 \beta \mathrm{H}$	+C-H -1.5		
	F	8	C6-C7	$1 \alpha \mathrm{H}$	C10-C9	$1 \beta \mathrm{H}$			
$2 \mathrm{~h}^{\text {d }}$	E	52	${ }_{\text {c }} 10 \mathrm{~B} \mathrm{Me}$			$6 \beta \mathrm{H}$	c	+3.4	
	F	48	C6-C7		C10-C9	$1 \beta \mathrm{H}$			

${ }^{a}$ Allowing for conformer population. ${ }^{b}$ From Table III. ${ }^{c}$ Indeterminate effect. ${ }^{d}$ See footnote b of Table I.
effects in dienes, ${ }^{13,15-17}$ conjugated ketones, ${ }^{16,18} \alpha-$ diones, ${ }^{19-21}$ and isolated olefins ${ }^{22-26}$ are the subject of current controversy. The substituent effects postulated here do not appear to be accounted for by any one set of self-consistent rules.

Burgstahler, et al., ${ }^{16,19}$ have shown that in a number of cases in which the observed Cotton effect cannot be reconciled with the diene chirality rule, ${ }^{13,15,17}$ the observations can be rationalized in terms of an empirical axial allylic bond chirality rule. The sign of the contribution of an axial allylic bond is shown in the diagram. The axial allylic bond contributions to the chirality of the dienes under consideration are listed in Table IV. For convenience these are separated into $\mathrm{C}-\mathrm{H}$ bond contributions and $\mathrm{C}-\mathrm{C}$ bond contributions.

axial bond chirality contributions ${ }^{16}$
Our conclusions about the allylic bond chirality effect for the folded levopimaric acid conformer are somewhat different from those of Burgstahler, et al. ${ }^{8}$ From our calculations, the $\mathrm{C} 6-\mathrm{C} 7$ bond is quasiaxial with a calculated 4-5-6-7 dihedral angle of 109°, whereas the $4-5-6-6 \mathrm{H}$ dihedral angle is calculated to be only 14°, and the $\mathrm{C} 6-6 \beta \mathrm{H}$ bond is essentially equatorial. Thus the allylic bond chirality contributions may be only weakly negative in this case. ${ }^{19}$

Chirality rules framed in terms of axial allylic bond contributions imply some type of specific orbital interaction between the allylic bond and the chromophore, ${ }^{18,22}$ although one suggested rule for olefins is framed in terms of allylic bond polarization. ${ }^{23}$ This should be contrasted with symmetry rules involving
(16) A. W. Burgstahler and R. C. Barkhurst, J. Amer. Chem. Soc., 92, 7601 (1970).
(17) E. Charney, J. M. Edwards, U. Weiss, and H. Ziffer, Tetrahedron, 28, 973 (1972).
(18) R. N. Totty and J. Hudec, Chem. Commun., 785 (1971).
(19) A. W. Burgstahler and N. C. Naik, Helv. Chim, Acta, 54, 2920 (1971).
(20) W. Hug and G. Wagniere, Helv. Chim. Acta, 55, 634 (1972).
(21) E. Charney and L. Tsai, J. Amer. Chem. Soc., 93, 7123 (1971).
(22) A. Yogev, D. Amar, and Y. Mazur, Chem. Commun., 337 (1967); W. Hug and G. Wagniere, Tetrahedron, 28, 1241 (1972).
(23) N. H. Andersen, C. R. Costin, D. D. Syrdal, and D. P. Svedberg, J. Amer. Chem. Soc., 95, 2049 (1973).
(24) A. I. Scott and A. D. Wrixon, Tetrahedron, 26, 3695 (1970); Chem. Commun., 1182 (1969).
(25) J. Gawronski and M. A. Kielczewski, Tetrahedron Lett., 2483 (1971).
(26) M. Fetizon, I. Hanna, A. I. Scott, A. D. Wrixon, and T. K. Devon, Chem. Commun., 545 (1971).
any proximate substituent, such as the olefin octant rule, ${ }^{24}$ which imply a static dissymetric perturbing field model. ${ }^{27}$ A semiquantitative estimate of the effect of an alkyl substituent in the latter case can be made by considering the proximity of the substituent to the chromophore and to the nodal planes of the symmetry rule. The data presented by Burgstahler and Barkhurst ${ }^{16}$ do not appear to be amenable to this type of analysis.

If an allylic bond chirality rule is to be applied in a quasi-quantitative manner, some idea of the relative importance of the factors involved is required. The formulation of the rule in terms of axial bonds suggests that the dihedral angle subtended with the diene system is one factor. Another possible factor is the nature of the moieties connected by the allylic bond. ${ }^{18,23,25,28}$ Models invoking specific interactions with axial allylic bonds have tended to treat axial allylic C-H bonds as important. ${ }^{16,22}$ In the absence of a quantitative theory, it should be noted that whatever the relative weighting attached to axial allylic $\mathrm{C}-\mathrm{H}$ bonds compared to axial allylic $\mathrm{C}-\mathrm{C}$ bonds, the axial allylic bond chirality approach fails to account satisfactorily for the data presented here (Table IV).

If we attribute essentially all of the effect to axial allylic C-C bonds, this allows the results for 1 a and 2 i to be reconciled and also accounts for the data originally presented by Burgstahler and Barkhurst. ${ }^{16}$ The strong negative effect in $\mathbf{1 c}$ is now anomalous, but an alternative source of this effect may be postulated.

In the model structure 9 , the homoallylic 9α methyl is close enough to the α face of the diene chromophore in the folded conformer to be involved in a repulsive interaction with C2 and C4 (above). Thus a specific interaction with this moiety may be responsible for the strong negative effect observed in $\mathbf{1 c}$.

A general contribution by axial homoallylic bonds has been suggested by Gawronski and Kielczewski. ${ }^{25}$ The anomalous diene Cotton effects discussed by Burgstahler and Barkhurst ${ }^{16}$ cannot be reconciled with such an effect, and the data discussed by Gawronski and Kielczewski ${ }^{25}$ are at any rate open to another interpretation. ${ }^{26}$ However, if the postulated effect of a 9α-methyl group arises from a specific interaction as suggested here, such interactions would not be expected

[^6]in more planar structures. Calculations suggest that through-space orbital interactions ${ }^{29}$ may play an important role in determining the spectroscopic properties of molecules.

The remaining result on which the calculations shed some light is the smaller positive $\Delta \epsilon$ observed for the $2,4,9(11)$-triene (2 g) in comparison to the analogous 2,4-diene (2e) (+7.1 ; cf. +11.2). Both are essentially completely in the E conformation, according to the calculations on the model systems, and the calculated diene dihedral angle is in fact slightly greater for the triene. The position and intensity of the uv absorption maximum of the long wavelength $\pi \rightarrow \pi^{*}$ band of the triene ($\mathbf{2 g}$) do not suggest any great degree of conjugation between the diene system and the homoallylic double bond ($2 \mathrm{~g}, \lambda 267 \mathrm{~nm}, \epsilon 5670$; 2e, $\lambda 265 \mathrm{~nm}, \epsilon$ 6400). The calculated VESCF bond order between the C5 π orbital and the C9 π orbital when the 9(11) double bond is included in the π system is 0.03 (distance $2.529 \AA$) as against a bond order of 0.31 between the C 3 and $\mathrm{C} 4 \pi$ orbitals. The dihedral angle between the $9-11$ and $5-4$ bonds is calculated to be -17.1° for the model system. This is in the opposite sense to the chirality of the 2,4 -diene system in this conformer. It seems reasonable that an interaction of this type should affect the vectorial rotational strength more than it affects the scalar oscillator strength. (This also holds true for the axial allylic bond effect.) The small $\Delta \epsilon$ observed
(29) C. C. Levin, R. Hoffmann, W. J. Hehre, and J. Hudec, J. Chem. Soc., Perkin Trans. 2, 210 (1973).
for the 2,4,9(11)-triene (2g) should thus be attributed to a specific electronic interaction rather than to a conformational change.

An alternative analysis of this observation might be made in terms of an allylic bond polarization rule. ${ }^{23}$ However, such a rule as presently formulated would require that a $\Delta 9(11)$ double bond and a 10β-methyl group have a substituent effect of the same sign, contrary to observation.

Perhaps the most important insight provided by the calculations is that very different conformational situations can give rise to very similar Cotton effects. Thus according to our calculations, the small $\Delta \epsilon$ observed for the $10 \beta-\mathrm{H}, 9 \alpha-\mathrm{H}$ compound 2 i arises from an essentially conformationally homogeneous system and is attributable to the near planarity of the diene and the absence of substituent effects. However, the small $\Delta \epsilon$ observed for the $9 \alpha, 10 \beta$-dimethyl compound $\mathbf{2 h}$ arises from the canceling Cotton effects of two conformers present in a near $1: 1$ ratio, which would each individually be expected to show a strong Cotton effect.

A more exact definition of the conformational properties of such flexible systems (and hence of the veracity of the calculated conformational preferences) must await further experimental data or advances in the quantitative theory of the Cotton effect. The value of force field calculations in providing insights into such complex conformational problems does seem clear, particularly in view of the difficulties in interpreting measurements of the Cotton effect.

Aliphatic Semidiones. XXII. Acyclic Dialkyl-1,2-semidiones ${ }^{1}$

Glen A. Russell,* David F. Lawson, ${ }^{2}$ H. L. Malkus, Robert D. Stephens, ${ }^{3}$ G. R. Underwood, Takao Takano, and V. Malatesta
Contribution from the Department of Chemistry, Iowa State University, Ames, Iowa 50010. Received April 3, 1974

Abstract

Mixtures of cis and trans isomers have been detected by esr spectroscopy for the symmetrical semidiones $\mathrm{RC}(\mathrm{O} \cdot)=\left(\mathrm{C}\left(\mathrm{O}^{-}\right) \mathrm{R}\right)$ where $\mathrm{R}=\mathrm{CH}_{3}, \mathrm{C}_{2} \mathrm{H}_{5}, n-\mathrm{C}_{3} \mathrm{H}_{7},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2}$, and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}$ and for the series $\mathrm{RC}(\mathrm{O} \cdot)=\mathrm{C}\left(\mathrm{O}^{-}\right) \mathrm{CH}_{3}$ where $\mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}, n-\mathrm{C}_{3} \mathrm{H}_{7},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CCH}_{2},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}$, and $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}$. Symmetrical semidiones with $\mathrm{R}=\left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{CH},\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2}$, and $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}$ showed only a single (trans) isomer. When both cis and trans isomers were detectable the cis isomers were favored by the presence of smaller gegenions and solvents of lower polarity. Lowering the temperature seemed to have little effect on the conformation of alkyl groups such as $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}$ or $\mathrm{CH}_{3} \mathrm{CH}_{2}$ in the semidiones. Lower temperatures favored the trans isomers over the cis isomers and caused the semidiones to disproportionate into the diketone and enediol dianion.

Diarylsemidiones (1), ${ }^{4-7}$ alkylarylsemidiones (2), ${ }^{8,9}$ monoarylglyoxal radical anions (3), ${ }^{9-13}$ and monoalkylglyoxal radical ${ }^{10,13,14}$ anions (4) have been de-

[^7]
scribed. Semidiones $\mathbf{1}$ and $\mathbf{2}$ prefer to exist in a trans

[^8]
[^0]: (1) For paper CI in this series, see D. H. Wertz and N. L. Allinger, Tetrahedron, 30, 1579 (1974).
 (2) This work has been supported by a grant from the National In. stitutes of Health (AM-14042).
 (3) U. Weiss, W. B. Whalley, and I. L. Karle, Chem. Commun., 16 (1972).
 (4) A. W. Burgstahler, H. Ziffer, and U. Weiss, J. Amer. Chem. Soc., 83, 4660 (1961); U. Weiss, H. Ziffer, and E. Charney, Chem. Ind. (London), 1286 (1962); Tetrahedron, 21, 3105 (1965).
 (5) J. C. W. Chien, J. Amer. Chem. Soc., 82, 4762 (1960); A. W. Burgstahler, J. N. Marx, and D. F. Zinkel, J. Org. Chem., 34, 1550, 3716 (1969).
 (6) U. Weiss and N. Gershheld, Experientia, 18, 355 (1962).
 (7) W. H. Schuller, R. N. Moore, J. E. Hawkins, and R. V. Lawrence, J. Org. Chem., 27, 1178 (1962); W. G. Dauben and R. M. Coates, J. Amer. Chem. Soc., 86, 2490 (1964).

[^1]: (9) N, L. Allinger and J. T. Sprague, J. Amer. Chem. Soc., 95, 3893

[^2]: (10) N. L. Allinger and G. Lane, J. Amer. Chem. Soc., 96, 2937 (1974).

[^3]: (11) E. L. Eliel, N. L. Allinger, G. A. Morrison, and S. J. Angyal, "Conformational Analysis," Wiley-Interscience, New York, N. Y., 1965.

[^4]: (12) An experimental free energy difference of the order of 0.50 $\mathrm{kcal} / \mathrm{mol}$ between the two levopimaric acid conformers is reported from low-temperature $C D$ studies according to a private communication from Professor A. W. Burgstahler
 (13) A. Moscowitz, E. Charney, U. Weiss, and H. Ziffer, J. Amer. Chem. Soc., 83, 4661 (1961); E. Charney, Tetrahedron, 21, 3127 (1965).
 (14) W. Hug and G. Wagniere, Helv. Chim. Acta, 54, 633 (1971).

[^5]: (15) C. C. Levin and R. Hoffmann, J. Amer. Chem. Soc., 94, 3446 (1972).

[^6]: (27) J. A. Schellman, J. Chem. Phys., 44, 55 (1966).
 (28) P. Crabbe and A. Guzman, Chem. Ind. (London), 851 (1971); A. F. Beecham, A. McL. Mathieson, S. R. Jones, J. A. Lamberton, A. A. Sioumis, T. J. Batterham, and I. G. Young, Tetrahedron, 27, 3725 (1971); A. I. Scott and A. D. Wrixon, ibid., 27, 4787 (1971).

[^7]: (1) This work was supported by grants from the National Science Foundation and the National Institutes of Health.
 (2) National Defense Education Act Predoctoral Fellow, 1967-1968.
 (3) National Institutes of Health Postdoctoral Fellow, 1965.
 (4) H. Staudinger and A. Binkert, Helo. Chim. Acta, 5, 703 (1922).
 (5) L. Michaelis and E. S. Fletcher, Jr., J. Amer. Chem. Soc., 59, 1246 (1937).
 (6) N. L. Bauld, J. Amer. Chem. Soc., 87, 4788 (1965).
 (7) E. T. Strom, G. A. Russell, and J. H. Schoeb, J, Amer. Chem. Soc., 88, 2004 (1966).
 (8) G. A. Russell and E. T. Strom, J. Amer. Chem. Soc., 86, 744 (1964).
 (9) G. A. Russell, E. T. Strom, E. R. Talaty, and S. A. Weiner, J. Amer. Chem. Soc., 88, 1988 (1966).

[^8]: (10) G. A. Russell, R. D. Stephens, and E. R. Talaty, Tetrahedron Lett., 1139 (1965).
 (1i) C. Corvaja, P. L. Nordio, and G. Giacometti, Tetrahedron, 89, 751 (1967).
 (12) G. A. Russell, D. F. Lawson, and L. A. Ochrymowycz, Tetrahedron, 46, 4697 (1970).
 (13) G. A. Russell and D. F. Lawson, J. Amer. Chem. Soc., 94, 1699 (1972).
 (14) N. H. Anderson, A. J. Dobbs, D. J. Edge, R. O. C. Norman, and P. R. West, J. Chem. Soc. B, 1004 (1971).

